
Real Analysis Lecture Notes

Job Hernandez Lara



Abstract. In his classic textbook: ”Principles of Mathematical Analysis”, Dr. Rudin claimed that the main

concepts of analysis include continuity, convergence, differentiation and integration. These notes correspond

to these main concepts based on Dr. Abbott’s analysis textbook ”Understanding Analysis”.
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CHAPTER 1

Review

1. Constructing Direct Proofs

A conditional statement is statement written as P =⇒ Q where P is the hypothesis and Q is the
conclusion. Intuitively, P =⇒ Q means that Q is true whenever P is true; in other words, if P is true then
it follows necessarily that Q is true. Here is the truth table for conditional statements:

P Q P =⇒ Q
T T T
T F F
F T T
F F T

A direct proof is a type of proof in which the mathematician demonstrates that one mathematical statement
follows logically from definitions and previously proven statements. To prove that a conditional statement
P =⇒ Q is true we only need to prove the Q is true whenever P is true. Why? Because P =⇒ Q is
true whenever P is false. If you take a look at the truth table for conditional statements you will notice
that P =⇒ Q is false when P is true and Q is false. So, by demonstrating that Q is true whenever
P is true we can prove the statement because you are guaranteed that the statement is true. There is a
technique for proving by this method called the know-show-table. In this technique we work forward from
the hypothesis and backwards from the conclusion and we try to connect the two by building a chain of
reasoning. You start with the conclusion and ask ”under what conditions is the conclusion true?” and then
work backwards. Suppose we are given the statement: If x and y are odd integers, then x · y is an odd
integer. Here is the table for this statement:

Step Know Reason
P x andyare odd integers Hypothesis

P1 There exists integers m and n such that x = 2m+ 1 and y = 2n+ 1 Definition of an odd integer.
P2 xy = (2m+ 1)(2n+ 1) Substitution
P3 xy = 4mn+ 2m+ 2n+ 1 Algebra
P4 xy = 2(2mn+m+ n) + 1 Algebra
P5 2mn+m+ n is an integer Closure properties of the integers
Q1 There exists an integer q such that xy = 2q + 1. Use q = (2mn+m+ n)
Q x · y is an odd integer. Definition of an odd integer

Step Show Reason

In the above know-show-table we ask, by working backwards (i.e from the conclusion), we ask ”How
do we prove that an integer is odd?” and then we continue asking the same question until we can connect it
with the hypothesis.
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CHAPTER 2

Real Numbers

Dr. Hardy claimed in his book ”A Mathematical Apology” that the theorem that states that
√
2 is

irrational is a beautiful theorem.

Theorem 1. There is no rational number whose square is 2.

Proof. Suppose there is a rational number n whose square is 2. Then n can be represented as p/q.
Consequently, this means that (p/q)2 = 2. We assume that p and q have no common factors; consequently,
p2 = 2q2. This means that p2 is even so p is even. Given this we can rewrite p as 2r. If we then substitute
p for 2r we end up with: 2r2 = q2 which means that q is even which in turn means that this can be reduced
further which is a contradiction because there were suppose to be no common factors.

To understand the main concepts of analysis, namely, continuity, convergence, differentiation and inte-
gration we must think hard about the real numbers. As a result, we start with the natural numbers which
are denoted as N = {1, 2, 3, 4, . . . }. Leopold Kronecker said “The natural numbers are the work of God.
The rest is the work of mankind.” Given the natural numbers we can perform addition but we must extend
our system to the integers, denoted as Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }, if we want to include the number
zero (additive identity) and the additive inverses needed to define subtraction. Now, how do we extend our
system to be able to define multiplication and division? The number one acts as a multiplicative identity
but to be able define division we must extend our system to the rational numbers denoted as Q = {all
fractions p/q where p and q are integers where q is not 0}. The set of rational numbers is a field because
we can perform addition, subtraction, multiplication, and division. The set of natural numbers and the set
of integers are not fields. Imagine the number line of the rational numbers. Then we will notice that there
are holes in this number line when we consider numbers such as the square root of 2 or square root of 3, and
so on. As a result of this observation, mathematicians extended the set of the rational numbers to the real
numbers. Given the real numbers wherever there is a hole in the number line we place an irrational number.

A set A ∈ R is bounded from above if there exists a b ∈ R such that a ≤ b for all a in A. Similarly, a
set A is bounded from below if there exists an l such that l ≤ a for all a ∈ A. A real number s is the least
upper bound for a set A ∈ R if it meets two conditions: 1) s is an upper bound for A; 2) let b be any upper
bound for A then s ≤ b. There isn’t a least upper bound in the rational numbers because you can always
reduce a given rational number; but there is a least upper bound in a subset of the real numbers. The least
upper bound is denoted as s = supA.

Lemma 2. Assume s in R is an upper bound for a set A ∈ R. Then s = supA if and only if for every
choice ϵ > 0 there exists an element a ∈ A such that s− ϵ < a. Here is a quote from the textbook:

Given that s is an upper bound s is the least upper bound if and only if any number smaller
than s is not an upper bound.

We will now talk about how Q is dense in R.

Theorem 3. Archimedean Property:

(i) Given any number x ∈ R, there exists an n ∈ N such that n > x.
(ii) Given any real number y > 0 there exists an n ∈ N satisfying 1/n < y.

Proof. Part (i) states that N is not bounded. Assume that N is bounded. Then by the Axiom of
Completeness N should have a least upper bound so we can set α = supN. Now if we consider α − 1 then
we no longer have an upper bound given lemma 2. Therefore there exists an n ∈ N satisfying α− 1 < n but
this is to say α < n + 1 and as a result n + 1 ∈ N which contradicts the fact that α is supposed to be an
upper bound for N. Part (ii) follows from (i) by letting x = 1/y.
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CHAPTER 3

Sequences and Series

1. Limit of a Sequence

Firstly, we need to understand what a sequence is. A sequence is function whose domain is N. In other
words, given a function f : N → R then f(n) is the nth term of the sequence. Now, that we have defined
what a sequence is we are ready to think about convergence of a sequence. A sequence an converges to a
whenever the following proposition is true: if n ≥ N then |an − a| < ϵ where ϵ is a positive number and
there exists N ∈ N. We denote (an) converges to a as liman

= a. Intuitively, this means that there is an
interval (a− ϵ, a+ ϵ) centered on a where N is the first entry into this interval.

1.1. Exercises. Exercise 2.2.5. Let [[x]] be the greatest integer less than or equal to x; for each
sequence find liman

and verify it with the definition of convergence.
Solution (2.2.5 a) lim5n = 0. So, let ϵ > 0 be an arbitrary positive number. Choose a natural number

N satisfying whatever ϵ happens to be. We want 5n/5 < ϵ/5 which yields n < ϵ/5. Choose a natural number
N satisfying N < ϵ/5. Let n ≥ N then n < ϵ/5 implies 5n < ϵ and hence |an − 0| < ϵ. Note that by claiming
that lim5n = 0 we mean that the sequence an = 5n converges to 0.

Solution (2.2.5.b) an = [[(12 + 4n)/3n]]. lim12+4n/3n = 1. So we must show that there exists an
N ∈ N such that n ≥ N implies |12 + 4n/3n− 0| < ϵ. Proof. Pick N = 6. If n ≥ N we then have
|12 + 4n/3n− 1| < ϵ because 12 + 4n/3n = 1 for all n > 5.

2. The Algebraic and Order Limit Theorems

A sequence is bounded if every term of xn is contained in an interval [−M,M ] or more formally:
Assuming there exists a number M > 0 such that |xn| ≤ M for all n ∈ N then the sequence xn is bounded.
The theorem that follows from this definition is the following:

Theorem 4. Every convergent sequence is bounded.

Proof. Suppose (xn) converges to a limit l. And furthermore suppose ϵ = 1 and by the definition of
convergence then we know that xn is in the interval (l − ϵ, l + ϵ) so there exists an N ∈ N such that n ≥ N .
So, we can conclude that |xn| < |l|+ 1 for all n ≥ N .

How do sequences behave with respect to the operations of addition, multiplication, division and order?

Theorem 5. (Algebraic Limit Theorem). Let liman = a and limbn = b. Then,

(i) limcan
= ca, for all c ∈ R;

(ii) liman+bn = a+ b;
(iii) liman∗bn = ab;
(iv) liman/bn = a/b, providedbisnot0.

2.1. Exercises. Exercise 2.3.1 (a). Let xn ≥ 0 for all n ∈ N. (a) If xn → 0 show that
∣∣√xn − 0

∣∣.
Whatever ϵ happens to be we want

√
xn < ϵ which is equivalent to xn < ϵ2. We claim that lim√

xn
= 0.

Proof. Let ϵ > 0 be an arbitrary positive number. Choose a natural number N satisfying N < ϵ2. Let
n ≥ N then n < ϵ2 implies

√
xn < ϵ and hence |an − 0| < ϵ.
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CHAPTER 4

Continuity

1. Continuous Functions

In short a function f is continuous at c ∈ A if limx→c f (x) = f (c). This means that f (x) converges to
f (c) by definition.

Theorem 6. (Characterization of continuity) Let f : A → R and let c ∈ A. The function f is continuous
at c if and only if anyone of the following three conditions is met:

(i) for all ϵ > 0 there exists a δ > 0 such that |x− c| < δ and x ∈ A implies |f (x)− f (c)| < ϵ.
(ii) for all Vϵ (f (c)) there exists a Vδ (c) with the property that x ∈ Vδ (c) andx ∈ A implies f (x) ∈

Vϵ (f (c))
(iii) if xn → c with xn ∈ A then f (xn) → f (c) .

If c is limit point of A then the above conditions are equivalent to limx→c f (x) = f (c).

Theorem 7. (Algebraic continuity theorem) Assume f : A → R and g : A → R are continuous at point
c ∈ A. Then,

(i) kf (x) is continuous at c for all k ∈ R;
(ii) f (x) + g (x) is continuous at point c;
(iii) f (x) g (x) is continuous at point c;
(iv) f (x) /g (x) is continuous at point c, provided the quotient is defined.

1.1. Exercises. Exercise 4.3.1 a. Let g (x) = 3
√
x. Prove that g is continuous at c = 0.

Solution 4.3.1.a. Let ϵ > 0. We need to argue that |g (x)− g (c)| < ϵ for all values of x in some δ
neighborhood around c. If c = 0 this reduces to the statement 3

√
x < ϵ which happens as long as x < ϵ3;

thus if we choose δ = ϵ3 we see that |x− 0| < δ implies |f (x)− 0| < ϵ.
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